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Mesenchymal stem cells, characterized by their ability to differentiate into

skeletal tissues and self-renew, hold great promise for both regenerative

medicine and novel therapeutic discovery. However, their regenerative

capacity is retained only when in contact with their specialized microenvir-

onment, termed the stem cell niche. Niches provide structural and functional

cues that are both biochemical and biophysical, stem cells integrate this com-

plex array of signals with intrinsic regulatory networks to meet physiological

demands. Although, some of these regulatory mechanisms remain poorly

understood or difficult to harness with traditional culture systems. Biomater-

ial strategies are being developed that aim to recapitulate stem cell niches, by

engineering microenvironments with physiological-like niche properties that

aim to elucidate stem cell-regulatory mechanisms, and to harness their

regenerative capacity in vitro. In the future, engineered niches will prove

important tools for both regenerative medicine and therapeutic discoveries.
1. Introduction
Mesenchymal stem cells (MSCs) have the ability to both self-renew and differ-

entiate, yielding daughter cells that are essential for tissue maintenance and

repair. Unlike embryonic stem cells (ESCs), MSCs must tightly balance special-

ization in response to regenerative demand and retention of a stem cell pool

throughout life and this balance is controlled by the niche environment e.g.

the bone marrow [1]. Further, perhaps because of their pericyte/perivascular

origin [2], MSCs have the ability to suppress the immune response and

reduce inflammation. These properties make MSCs ideal therapeutic candi-

dates. Potential clinical applications are wide ranging, from underpinning

tissue regeneration for the treatment of trauma (tissue engineering/regenerative

medicine [3,4]) to novel cancer therapies (homing to tumours [5] and then deli-

vering drug/gene therapies [6,7]) and new transplant protocols (providing

immune-suppressed environments allowing tissue engraftment [8–10]).

However, since their discovery in 1974 [11] there have been less clinical suc-

cess stories than first imagined for MSCs, currently there are only a small

number of other adult stem cell (ASC) therapies approved in the clinic. Perhaps

of greatest success, are bone marrow transplants which for over 50 years have

been harbouring haematopoietic stem cells (HSCs) to treat leukaemia and lym-

phoma patients, and more recently autoimmune diseases such as multiple

sclerosis [12]. In 2015, the use of limbal stem cells from the eye were approved

in Europe to repair cornea injury and restore sight [13].

MSCs are easily harvested from autologous bone marrow, fat or umbilical

cord and have shown promise in vitro and in vivo with their ability to form

bone and cartilage as well as through their immunomodulatory capacity;

indeed, this capacity is finding use in e.g. islet transplant procedures [14].

Autologous MSC-based products, e.g. PREOB and Bonofill are in advanced

clinical trials. Further, companies are starting to look to market allogenic

MSC-based products, such as Trinity ELITE/Evolution, AlloStem, Osteocel

Plus, Cellentra VCBM.
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Box 1. Model of the organization of stem cells and tissue-specific mesenchymal progenitors. Multipotent stem cells exist in homeostasis between
quiescence and an activated state. Activation, and entry to the cell cycle, occurs upon tissue damage or other physiological stimuli. Upon activation
(regenerative demand), multipotent progenitor cells with transit amplification capacity arise. These progenitors are the precursors to the tissue-
specific mature cells, for example osteoblasts, adipocytes and chondrocytes in the mesenchymal stem cell compartment. The activated stem cell and
its daughter cells differentiate or can return to a quiescent state once the tissue repair or other physiological process is complete. This homeostasis
between quiescence and self-renewal is tightly regulated to avoid transformations and to retain a viable stem cell pool throughout the life of the
organism [15]. (Online version in colour.)
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MSCs mediate the fine balance between differentiation,

proliferation, self-renewal and quiescence through cell-

intrinsic regulatory networks (box 1). However, only in

concert with their specialized microenvironment do they

retain their unique properties. This local microenvironment

is termed the stem cell niche. First described four decades

ago by Schofield [16], it refers to the extrinsic physical and

functional factors that feedback to mediate cell behaviour.

ASC niches have been identified in multiple human tissues,

including HSCs in the bone marrow [17], neural stem cells

in the subgranular and subventricular zones [18], epidermal

stem cells in the hair follicle [19,20] and corneal limbus [21]

and intestinal stem cells (ICSs) in the base of the epithelial

crypt [22]. The perivascular origin of MSC is likely the

factor that means that MSCs are found in different anatomical

locations e.g. bone marrow, adipose tissue and close to the

corneal limbus [2].

Model organisms have served as excellent tools for inves-

tigating stem cell niches, however they do not convey the

complexity of the mammalian niches that have proven

difficult to access and visualize, leaving many niches incom-

pletely defined [23]. Mechanistic studies on model systems,

such as Drosophila melanogaster and Caenorhabditis elegans,

allow combinatorial approaches of molecular, genetic,

systems and cell biology methods that have contributed

greatly to understanding stem cell behaviours. Drosophila
offer simple experimentation on well-characterized structures

such as the fly gonad, which contains a niche environment

with germ-line stem cells that are actively dividing. Owing

to genetic and cell-biological methods that are uniquely avail-

able to fly biologists these simple systems render powerful

tools. How similar fly and mammalian niches are would ulti-

mately require parallel understanding of structures and

functions, however some similarities can be drawn, for
example, from conserved signalling pathways and cell

types that will ultimately prove key for underpinning

mechanisms in the mammalian niche [23,24].

Many challenges remain about what niche components

are fundamental for retaining stem cell properties—how

and what is being controlled, and for what purpose? Aims

to address these challenges rely on advances in technologies

that will allow the recapitulation of the niche outside of the

body. Such technologies will offer greater insight into com-

ponents, and cell-intrinsic and extrinsic interactions that

regulate stem cells in specific microenvironments. This will

allow us to understand what questions we need to answer

to exploit these cells using biotechnological expansion

approaches for therapeutic potential. As biomaterial technol-

ogies advance, answers to these questions are being

elucidated, with the ability to construct and manipulate ‘de

novo’ niches and harness the differentiation potential of

stem cells.

Biomaterial (surfaces, tissue engineering scaffolds), bio-

fabrication (microfluidics, three-dimensional bioprinting)

and bioreactor (physiological environment) techniques hold

the potential to allow us to construct, deconstruct and

investigate the important components of cellular microenvir-

onments. Such approaches could evolve the development of

both reductionist stem cell interfaces allowing high through-

put analysis and discovery and, perhaps more importantly,

non-animal technologies (NATs) that recreate tissue complex-

ity and reduce costly/inefficient animal experimentation. The

challenges, however, are great. The niche, as highlighted in

figure 1, is a complex environment. It is notable that in

small molecule drug discovery, the drive for high through-

put, overly simplified cell models that do not recreate cell

niches and animal testing in non-human models have fuelled

the productivity crisis where large numbers of drug
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Figure 1. Parameters of the stem cells and their niches. Niches are multi-factorial and complex microenvironments that are unique and specific to function, however
many principle parameters of niches are shared. Generally, they are comprised of physical and dynamic factors such as heterologous cellular components and cell –
cell interactions, soluble and secreted or membrane bound factors, immunological activation and response, extracellular matrix (ECM) protein components and
structures, physical architectural parameters, oxygen tension and metabolic control. Adapted from reference [25]. (Online version in colour.)
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candidates are being taken forwards, many to ultimately fail

in clinical trial. Only 43% of fails are not predicted by tra-

ditional in vitro and pre-clinical in vivo screens and move

into clinical trials [26]. This is driving Pharma to look to

NATs [27], built using human cells and likely requiring the

tissue complexity that stem cells can produce. Such systems

that can be used to predict drug mechanism, toxicity and effi-

cacy require understanding of cell (stem cell) niche

environments and techniques borrowed from regenerative

medicine to direct the cells.

Here we review recent progress in the area and give a for-

ward look on the development of artificial niches, with

particular focus on MSCs. First, we discuss how biomaterial

technologies have developed our understanding of cell–

substrate interactions, and consider important factors in a

cells’ niche that allow us to differentiate stem cell populations

for potential use in regenerative medicine. We then discuss
how this understanding has led to recent advances in harnes-

sing the capacity of stem cell self-renewal for prospective use

in stem cell transplants and for immunosuppression. Finally,

we provide an outlook on how combinations of such tech-

niques provide opportunities for the generation of complex

artificial stem cell niches.
2. Differentiation
Stem cell niches maintain self-renewal/quiescence [28]. How-

ever, this dynamic and multicellular environment must also

signal for differentiation as part of regenerative processes.

Cues in these environments are complex. Mechanical [29],

physical [30], chemical [31], spatial [32] and temporal [33]

cues ranging across many magnitudes—for example from

subcellular level forces from the extracellular matrix (ECM),
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ties all inherently have both cell intrinsic and cell extrinsic

effects, resulting in extensive effects on stem cell function.
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2.1. Topography
To understand how properties of the biomaterial interface,

such as stiffness, topography and chemistry can regulate

cell behaviour, we must first consider how cells adhere to

substrates. The architecture of a cell’s microenvironment con-

tains stimuli ranging from the micro to the nanoscale;

microscale features are in the range of the size of the cell

itself and result in whole-cell responses such as alignment

of cells with topographical features, known as contact gui-

dance [35]. However, nanoscale features present a

multitude of cues that are several orders of magnitude

below that of the cell [32].

Cell adherence to substrates is typically through integrins,

transmembrane receptors that tether to the ECM, which itself

forms an intermediate layer of proteins adsorbed on the sur-

face of materials exposed to serum [36,37]. Integrins are

heterodimeric proteins (containing a- and b-subunits) that

ligate to peptide motifs on ECM proteins, for example the

arginine, glycine and aspartic acid (RGD) tripeptide [38].

These interactions cause intracellular signalling cascades,

typically G protein activation leading to phosphorylation of

myosin light chain kinase (MLCK) through Rho-associated

protein kinase (ROCK), increasing actin–myosin contractility

causing integrin clustering and cell adhesion formation

[39,40]. Adhesion formation is dynamic, cells use unbundled,

actin-driven membrane projections, filopodia, to probe the

external environment. It has been shown that filopodia can

follow contact guidance cues down to 10 nm in height [41].

At the sub-10 nm height scale nanoscale projections have

been detected, evidencing the great sensitivity of cellular sen-

sing. It is noteworthy that at this sub-10 nm scale, contact

guidance was not observed, just feature interactions [42].

Control over adhesion size has been achieved using litho-

graphy strategies to create nanopatterned substrates with

controlled size, shape, spacing and symmetry in a variety

of materials; patterns have included nanopits [43–45],

nanopillars [46] and nanogrooves [47]. Control of these

nano-features allows control over adhesion size, number

and spacing. It has been shown that large, super-mature,

adhesions (greater than 5 mm long) are required for osteogen-

esis of MSCs [48]. By creating substrates that promote

increased adhesion size, intracellular tension is also increased

and this conformational change is linked to mechanical

changes in the cytoskeleton, which can transfer tensile (contrac-

tile) forces to the nucleus, perhaps via cytoskeletal tensegrity

[49,50], and increased intracellular tension is linked to osteo-

genesis [48]. Such changes in nucleus shape can consequently

affect chromosomal arrangements [51–53], and these changes

can potentially impact stem cell phenotype [54].

Such alterations in cell adhesion, cytoskeletal organiz-

ation and mechanotransductive cell fate changes are likely

to be driven by the topography–protein interface. Indeed, if

fibronectin (FN), a major cell-adhesive protein of the ECM

is absorbed onto nanopit patterned surfaces, FN adsorbs

within the pits and it was seen that cells probed these pits

with filopodia, leading to ‘nanoimprinting’ of the pits on

the cell membrane, an effect that was not observed when

the substrate was not coated in FN [55]. Nanoimprinting
has been shown to be cell-adhesion mediated, with adhesion

to topographical features leading to mimics of the topogra-

phy in the basal cell cytoskeleton [56]. If the integrins are

blocked then nanoimprinting cannot occur [56], indirectly

demonstrating the importance of the ECM on cell response

to shape. This suggests that the topography-driven changes

in cell cytoskeleton organization and adhesion are mediated

by protein adhesive interface and cells interact with this

interface dependent on the topography [55].

Cell adhesion and subsequent spreading that governs size

and shape influence physiological processes such as cell sur-

vival [57]. Using microcontact printed ECM islands of

decreasing size, it has been shown that cell confinement gov-

erns control over growth and death, with small areas that

restrict spreading leading to apoptosis [57]. Since then, this

technique has been employed to confine MSCs in specific

morphologies, controlling adhesion and intracellular tension

[39,40]. On ECM islands/shapes where the MSCs remained

rounded, they were unable to form mature adhesions, lead-

ing to adipogenic lineage commitment. By contrast, ECM

islands/shapes and sizes that allowed spreading, promoted

actin–myosin contractility and mature adhesion formation

drove MSCs to undergo osteogenesis [39,40]. The actomyosin

tension of the cytoskeleton contributes to this geometric con-

trol, which is biophysically linked through adhesion

formation governed at the nanoscale by changes in plasma

membrane. It is thus further notable that modulation of the

plasma membrane lipid assembly can regulate intracellular

signalling and thus stem cell fate [58].

Topographical RGD coupled substrates have been used to

decouple adhesion requirements for cell spreading. As integ-

rins ligate, they are coupled to the actin cytoskeleton.

Through activation of G-proteins inducing actin–myosin con-

traction, the integrins are gathered together leading to mature

adhesion formation comprising many integrins. Using nano-

colloid particles with one RGD motif covalently linked to

each colloid, it has been demonstrated that when RGD is at

a density of less than 70 nm apart, integrin gathering can

occur; above this density integrins cannot gather together

and form mature adhesions [59,60]. Using electron beam

lithography approaches to create groups (dimers to hepta-

mers) of RGD within 70 nm of each other, it was found that

the small clusters separated beyond gathering distance,

whereas tetramers of gathered integrins were required for

complete cell spreading—i.e. functional adhesions [61].

This topographical control over how cells adhere to sub-

strates has been used to control either self-renewal or

osteogenic differentiation of MSCs, using topographies that

can be remarkably similar. For example an electron beam

lithographically defined pattern that permits out-of-niche

self-renewal is comprised of pits with a diameter of 120 nm,

depth of 100 nm and centre–centre spacing of 300 nm in a

square lattice (SQ) [44]. Adding just +50 nm offset from

the centre position, changing the surface to near-square

(NSQ) changes MSC fate to osteogenesis [45]. As noted

above, adhesion size is quite different on each surface, with

MSCs forming smaller adhesions and less intracellular ten-

sion on SQ compared to NSQ [43] (figure 2). It is

interesting to note that cells on the NSQ surface change

their endogenous ECM output from FN to vitronectin [62].

Vitronectin has been associated with increasing cells’ ability

to bridge gaps in the ECM, this means that if enough integ-

rins are gathered in two close locations, intracellular linker
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Figure 2. Topography to control MSC adhesion for self-renewal and osteogenesis. (a) Self-renewing MSCs adhere more-weakly than osteo-committed cells, leading
to lower levels of integrin-mediated signalling through focal adhesion kinase (FAK), retaining levels of extracellular signal-regulated kinase (ERK1/2) to support
growth but not differentiation. (b) MSCs undergoing osteogenesis require larger adhesions, increased FAK activation elevates ERK1/2 activation to levels required
for lineage commitment, increasing intracellular tension, activating Runt-related transcription factor 2 (RUNX2), a key regulator of osteogenesis, while simultaneously
inactivating adipogenic regulator peroxisome proliferator-activated receptor gamma (PPAR-y). Fluorescent images show a marked increase in adhesion size on near
square (NSQ) compared with square (SQ) surfaces. Adapted from reference [43]. Copyright & 2018 American Chemical Society. (Online version in colour.)
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proteins, such as vinculin, can span the gap in-between the

two locations, even if there are no integrin ligands present

in the gap; this is called bridging and vitronectin is a more

effective bridging protein than FN [63]. We further note

that the ECM is a complex mixture of proteins and that inter-

action with other receptors can also elicit changes. For

example, the HAVDI sequence (histidine, alanine, valine,

aspartic acid, isoleucine) can interact with cadherin receptors,

key factors in cell–cell adhesion, and cause loss of intracellu-

lar tension, even in the presence of abundant RGD, through

blocking the g-protein RAC [64,65] (figure 3b).

Osteogenic nanotopographies were originally developed

with orthopaedic implants in mind, where patterns alone

would guide cell fate. Such implants are typically made

from titanium and its alloys. For example, hip replacements

are stabilized by stems into the bone marrow of the femoral

canals. The bone marrow, once disrupted, can no longer func-

tion effectively as a niche and the stem cells differentiate in

response to the implant, but mainly into soft tissue forming

fibroblasts. Fibroblasts are the default differentiation of the

MSC, with MSCs originally identified as fibroblastic colony

forming units [67]. This soft tissue encapsulation leads to

micromotion and ultimately implant failure. It is thus notable

that topographical features that drive osteogenesis, such as

disordered (but not random) nanoscale patterns developed

using electron beam lithography in polymer substrates have

gone on to be featured in titania (the oxide of titanium)

using polymer demixing to provide disordered masks for

anodization processes [68–70]. It is further notable that

such topographies retain osteogenic properties as they trans-

late into metals [71,72]. However, better implant integration

is only one problem with orthopaedic implants—infection

is perhaps a greater problem and can lead to catastrophic

implant failure. It is thus notable that bactericidal nanotopo-

graphies have started to be developed using high-aspect ratio
nanofeatures [73]. Such nanofeatures can be tuned to support

osteogenesis as well as kill bacteria [74], especially if the topo-

graphical approach is twinned with chemistries that can

facilitate enhanced eukaryotic cell adhesion in order to also

promote bone formation [75].
2.2. Mechanics
The ECM and surrounding cell junctions have a major phys-

ical influence in transmitting forces between cells, which

ultimately regulate intracellular signalling pathways and

therefore fate [29,66,76,77]. Cells can intrinsically generate

mechanical forces within their environment, for example

actin–myosin contractility leading to matrix remodelling

[78,79]. Equally, mechanical force can come from extrinsic

sources, such as tensile, compressive forces or shear stresses

[29]. Whether individually or collectively, these mechanical

forces impact and regulate cellular behaviour.

Intrinsic and extrinsic mechanical forces guide early

embryo development, even from as early as the blastocyst

stage, when remodelling of cell–cell junctions is driven by

intrinsic cell forces to relieve tension as the embryo transitions

through germ-band elongation. This remodelling of junctions

is not determined by external forces at tissue boundaries but

rather depends on myosin II-dependent spatial reorganiz-

ation leading local forces at cell boundaries [80]. Later in

development, the mechanical properties of the ECM regulate

organ morphogenesis and development, where cell layers are

organized into defined structures by traction forces on the

ECM providing the template for organ growth [29]. This

remodelling and development continues into adulthood as

tissues maintain structure and function. One recent study

highlighted how epidermal stem cells regulate this process

through biomechanical signalling, where local crowding

from dividing stem cells deforms cell shape and stress
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[65,66]. (Online version in colour.)
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distribution, triggering differentiation of the neighbouring

cell [77]. Owing to the complexity of this communication

between cells and the environmental mechanical milieu, bio-

material strategies have played a key role in elucidating how

these cues affect stem cell behaviour. By deconstructing com-

plex environments and taking early reductionist approaches

we are beginning to understand how mechanical force

regulates cell behaviour.

Much research on MSCs, has previously been carried out

on tissue culture plastic, or on other stiff and planar
substrates. However, many stem cell niches often have low

stiffness and are three-dimensional. Hydrogel systems are

optimal for investigating mechanobiology due to their

unique properties. Natural or synthetic polymers can be

physically or chemically cross-linked in a controlled manner

to produce hydrogel systems with tuned degradability,

hydrophilicity and stiffness. The water that fills the space

between the macromolecules leads to a degree of flexibility

similar to that of natural tissues, making them both biocom-

patible and biomimicking [81]. Thus, hydrogels provide
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optimal systems for understanding cell response on or in soft

substrates that are more physiological-like. Original work

from Engler et al. used polyacrylamide (PAM) gels of tune-

able matrix stiffness to guide stem cell fate through distinct

tissue lineages; neural at 1 kPa, muscle at 12 kPa and bone

at 30 kPa. This simple tuneable system has somewhat set the

pace over the last decade for the unravelling and exploiting

the biological mechanisms linked to mechanoregulation of

MSCs [82]. Recent studies show stiffness also plays a role in

cell migration [83], proliferation [84] and spreading [85].

Physiological interfaces in vivo exhibit gradients of stiff-

ness, such as those at tissue junctions or at pathological

boundaries, e.g. neuromuscular junctions and the tumour

boundary [86]. Isolated cells are known to migrate to regions

of different stiffness, ‘durotaxis’, the axis of migration

depends upon the cell type; with stem cells known to migrate

to regions of increasing stiffness [87,88]. Cancer cell lines,

meanwhile, have been shown to have a variable relationship

with substrate stiffness [89,90]. Multicellular clusters exhibit

durotaxis, even if isolated cells do not. Groups of epithelial

cells were found to migrate towards stiffer regions—cells

atop stiffer substrate are able to gain better traction than on

softer regions through integrin binding, intercellular junc-

tions and the action of myosin motors are then able to

contract neighbouring cells resulting in collective movement

to firmer ground [91]. These observations highlight the

need to think about both the inherent substrate stiffness

and also the underlying stiffness gradient. Recently, a

method of polymerization control has been developed to

allow the user control over a stiffness gradient of PAM gels,

using unreacted cross-linker and monomer in a prepolymer-

ized hydrogel sink resulting in a tunable matrix ranging from

0.5 to 8.2 kPa mm21. This allows for an in vitro model span-

ning the in vivo physiological and pathological range that

can facilitate investigation of a range of mechanical signals

on one surface [86]. Other studies have combined two bio-

material strategies to achieve tissue interface-like differentiation

of MSCs. By engineering a hydrogel at a stiffness in the

boundary of cartilage, but lower than that of bone, and com-

bining this in a modular system with an osteogenic

topographically patterned substrate, this approach enabled

anisotropic differentiation of MSCs from a single source

down chondrogenic and osteogenic lineages, similar to the

interface of articular cartilage and bone found at the end of

long bones [92].

Elucidating the mechanism behind what micro- and

nanoscale properties cells sense at the cell–material interface

of substrates of given stiffnesses has been a matter of some

debate. Differentiation of MSCs on polydimethylsiloxane

(PDMS) and PAM hydrogels of varying stiffness (0.1 kPa–

2.3 MPa) with a covalently attached collagen coating were

used to show that cell spreading and differentiation were

unaffected by differing PDMS stiffness, with MSCs commit-

ting to osteogenic lineages. PAM substrates of high elastic

modulus also exhibited osteogenic differentiation of MSCs,

whereas this potential was lost on softer PAM substrates,

decreased ERK/MAPK signalling was observed, suggesting

MSCs were unable to form stable focal adhesions at this

low modulus. Trappmann and colleagues used differences

in ECM tethering to explain this effect, pore size on PAM sub-

strates, but not PDMS, decreased almost twofold on soft

substrates, proposing that varying pore size alters collagen

tethering and thus local stiffness i.e. lower collagen anchoring
density enhanced cell spreading and therefore differentiation

[93].

On the other hand, work from the Engler group system-

atically modulated porosity of PAM substrates, without

altering stiffness, to control ligand–substrate tethering.

MSCs were cultured on these substrates and stiffness was

indeed found to be the driving factor for cellular spreading

and differentiation. Varying the degree of ECM–protein

anchoring reaffirmed this indicating bulk stiffness of two-

dimensional matrices as the main driver of cell response,

irrespective of protein tethering and porosity [94].

Despite the exact rules for mechanical control remaining

to be fully resolved, elucidation of cell signalling is emerging.

Osteogenesis of MSCs on stiff substrates is regulated by the

nuclear translocation of Yes-associated protein and its tran-

scriptional co-activator (YAP and TAZ), which consequently

activates the osteogenic transcription factor runt-related tran-

scription factor 2 (RUNX2) [95]. Preserved nuclear

compartmentalization of YAP/TAZ is observed when

MSCs are cultured on stiff substrates for long culture periods

(approx. 10 days), meaning they lose the ability to respond to

softer matrices and remain committed to an osteogenic differ-

entiation profile, suggesting MSCs possess a mechanical

memory [95] (figure 3a). YAP/TAZ activation, until recently,

was thought to be exclusive to the Hippo signalling pathway

[96], however using PAM gels of various stiffness a recent

study highlighted its direct mechanical activation [50]. By

varying substrate stiffness it was found that if forces from

adhesion and/or the cytoskeleton are high enough (above

5 kPa) stress fibres reinforce the cytoskeleton, in turn,

mechanically coupling it to the nucleus. This provides a

direct mechanical link from focal adhesion to the nucleus,

leading to nuclear flattening, stretching of nuclear pores

and thereby increasing YAP nuclear import [50]. Therefore,

in stiff, osteogenic environments MSCs shuttle YAP to the

nucleus to activate mechanosensitive signalling pathways.

As substrate stiffness correlates to the expression and

localization of cadherins and integrins, and therefore cell–

cell and cell–matrix adhesions, this mechanosensitive

mechanism can be exploited to modulate biochemical signal-

ling [97–99]. One study highlighted this by using materials

modified to present adhesive peptide motifs to modulate

fate commitment in MSCs (figure 3). Co-presentation of the

N-cadherin adhesive sequence HAVDI, mimicking cell–cell

interactions, and the FN RGD sequence, mimicking cell–

ECM interactions, were integrated into hydrogels of tuned

matrix stiffness. Upon co-presentation on stiff 2D gels,

YAP/TAZ remains cytosolic, thereby preventing osteogenic

lineage commitment. However, when the HAVDI motif is

removed and MSCs are thus exposed to an environment

with more ECM-like interactions, YAP/TAZ translocates

and MSCs commit to osteogenesis [66]. Interestingly, how-

ever, things differ in three dimensions, when the HAV

motif (the conserved part of the HAVDI sequence) is pre-

sented to MSCs encapsulated within hyaluronic acid (HA)

gels, cells perceive this more cell–cell-like interface and

commit to chondrogenesis—chondrocytes typically live in

pairs and hence cell–cell interactions are crucial [64].

Mechanical memory may have importance and impli-

cations for cell–material interactions, but also for clinical

use. MicroRNAs (miRNAs) are short, single-stranded, non-

coding RNAs. They bind one or more messenger RNA

(mRNA) and therefore regulate protein expression; typically,
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miRNAs attenuate the ability of mRNAs to be translated to

protein by binding the mRNA sequence [100]. MiRNA21, a

known regulator of fibrosis, is found to be elevated on stiff

substrates (such as tissue culture plastic) compared to softer

substrates (such as hydrogels). Elevated levels of miRNA21

repress mRNAs coding for proteins involved in anti-fibrotic

actions [101]. MSCs with elevated miRNA21 levels cultured

on stiff substrates (approx. 100 kPa), retain mechanical

memory for several passages once moved to soft hydrogels

(15 kPa). Fibrotic scarring is a major clinical problem, there-

fore MSC mechanical memory has clinical implications

when considering use for transplantation. It should be con-

sidered during pre-culture of MSCs, stiff substrates should

be avoided [101]. MiRNA21 also targets several proteins

involved in osteogenesis, such as SMA Small, MAD mothers

against decapentaplegic 7, SMAD7, and SRY sex determining

region Y-box2, SOX2. When MSCs with reduced miRNA21

expression are pre-cultured on soft substrates, they show

more osteogenic potential that those exposed to stiff sub-

strates, this suggests that lineage potential may be reduced

by the onset of a fibrotic programme [101].

Recently, a more counterintuitive mechanism of stiffness

related integrin–ligand interactions has emerged. The ‘mol-

ecular clutch model’ has long been proposed to explain

actin cytoskeleton and cell migration dynamics and has

now been employed to explain cell mechanotransduction

[102]. Using gels with controllable rigidity and ECM ligand

(RGD) spacing, it was shown that at low stiffness, close to

that of some of the softer body tissues (greater than 5 kPa),

when spacing between ligands was increased, focal adhesion

growth also increased. Remarkably, at higher stiffness ranges

typical of many body tissues, increased RGD spacing lead to

focal adhesion collapse. At 30 kPa the rigidity threshold was

found at around 100 nm RGD spacing, and at 150 kPa focal

adhesion collapse was found at 50 nm spacing. Above this

stiffness range, i.e. that of tissue culture plastic, conventional

rules apply—increased ligand density is required for

adhesion formation. However, for these more physiological

stiffnesses, the molecular clutch can be employed, that is,

ligand spacing is not via direct sensing, but instead individ-

ual integrin–ECM ligands (or ligand–cell adhesion

molecule) act as the ‘molecular clutches’ and as force load

increases more clutches are recruited, up to a threshold

value. The recruitment of more clutches redistributes the

force load among them, thus reducing the total force

each individual clutch is exposed to. When the threshold

recruitment is reached at high stiffness and increased spa-

cing, no further distribution can occur and the adhesion

collapses [103].

Other key stiffness-related mechanisms are also becoming

elucidated with the use of biomaterial strategies. In 2013

Swift et al. linked the mechanical tension exerted on a cell

through tissue specificity and ECM stiffness to changes in

transcriptional programmes. They proposed a model sup-

porting a physical link between the nucleus and mechanical

properties of the extracellular environment, whereby tension

from the ECM lead to biophysical changes in the cell cytoske-

leton on the nucleus [104]. Cells discern, translate and

transmit mechanical cues biochemically through mechano-

sensitive receptor-mediated signalling pathways [105], and

alternatively cell–cell and cell–ECM interactions are interwo-

ven with adhesion and filament networks to transmit forces.

Further, cytoskeletal rearrangement due to substrate stiffness
can distort the nuclear envelope and therefore alter chromo-

somal positioning within the nucleus, altering the spatial

access of transcriptional regulators to distinct chromatin

sites [51]. Swift et al. showed that environmental stiffness

can change the transcription of the gene LMNA, and the stab-

ility of its protein lamin-A. In response to increased cellular

tension, turnover of lamin-A is reduced leading to physical

stiffening of the nucleus and stabilization of the nuclear

lamina and chromatin, and thus accumulation of YAP [104].

To describe how the cytoskeleton can transmit such

forces, elegant, tension based, cell-tensegrity models have

been proposed by Inger [106–108]. His group have illustrated

direct mechanical connection from integrins to the nucleo-

plasm [109] and, indeed, mechanical interconnection

between the chromosomes [110]. Further evidence of direct

cytoskeletal–nucleoskeletal coupling can be evidenced

through linkers of cytoskeleton and nucleoskeleton (LINCs

[111]) and also matrix attachment regions (MARs) between

the nuclear lamins and the telomeric regions of the chromo-

somes [112]. Using magnetic integrin stimulation (magnetic

nanoparticles coupled to integrin receptors with applied

magnetic fields—magnetic twisting cytometry), Inger and

colleagues have been able to show that integrin twisting

can distort the nucleus [113,114].

The last decade has focused heavily on tuning and defin-

ing matrix stiffness of biomaterial niches; it has been a key

facet in controlling cellular fate through traction forces. How-

ever, what is often neglected is that tissues and organs of the

body are often not purely elastic. Non-degradable hydrogel

systems capture some aspects of the physiological ECM

environment, however reconstituted ECMs such as collagen

and fibrin, and tissues such as adipose tissues, brain, liver,

fracture haematoma, and the soft callus of regenerating

bone, are all temporally viscoelastic [115]. The microenviron-

ment can either store (elasticity) or dissipate (viscosity)

cellular forces, thus impacting interacting cells. As both inves-

tigative and fabrication techniques progress exploration into

three-dimensional matrices has pushed the field to more bio-

mimetic systems, with strain exertion differing by almost an

order of magnitude between two- and three-dimensional cul-

tures (3–4% in two dimensions, 20–30% in three dimensions)

[115–117], this should become a key caveat for ‘humanized’

in vitro modelling systems.

Because of this, there is now focus on the effects of three-

dimensional matrices on MSC differentiation that go beyond

bulk material mechanical properties. MSCs encapsulated in

alginate of varied stiffness (2.5–110 kPa), presenting RGD

motifs at various clustering densities, highlighted that stiff

substrates that hindered cell spreading still enabled osteo-

genic commitment. Hence, rather than cell morphology it is

the cells ability to recognize and cluster adhesion ligands,

thus generating traction forces, that drives cell fate [118].

This supports the premise, in three-dimensions, that cells

‘sense’ differing stiffness as differing adhesion-ligand

presentations.

Another key example combines both three-dimensional

culture with matrix degradability; a tuneable HA based

system that either permits or prevents cell-mediated degra-

dation was used to show cell fate is morphology-independent

when the matrix is degradable, but is instead directed by

cell-mediated traction forces. Local degradability allowed

cells entrapped in gels to reach otherwise unavailable

adhesive ligands, rearranging their cytoskeletal structure to
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generate traction forces that potentially lead to osteogenic

commitment, irrespective of morphology or bulk matrix stiff-

ness [119]. These two studies suggest that cell-mediated

traction forces are influenced by the cells’ ability to locally

deform rigid substrates but show that bulk matrix rigidity

directly [118] or indirectly [119] regulates cell fate.

Fibre architecture has also been highlighted as a mechan-

ism for transducing matrix stiffness, where lower fibre

stiffness allow cells to recruit nearby fibres and correlates

with enhanced cell spreading and proliferation [120].

Dynamic properties such as matrix degradation and fibre

recruitment establish the fourth dimension into three-

dimensional matrices [121]. The ECM and niche are naturally

dynamic microenvironments, and hence the introduction of

time more accurately captures in vivo-like mechanical behav-

iour, and is also important when considering MSC

mechanical memory [95]. The importance of mechanical

dynamics is further highlighted by a recent study, where con-

trolled stress-relaxation of substrates determined MSC fate

changes; the rate of the stress relaxation determined the

degree of mechanical matrix remodelling. In rapidly relaxing

hydrogels, MSCs undergo osteogenesis due to the strain the

cells exert on the hydrogel introducing an initial level of intra-

cellular stress that eases with matrix reorganization. This

facilitates integrin clustering which in turn generates tension

allowing the cell to ‘sense’ the stiffness of the material; lead-

ing to morphology changes and bone matrix formation [115].

The incorporation of these dynamic features into three-

dimensional matrices will be critical in understanding and

harnessing the cellular response to mechanical properties.
2.3. Chemistry
Chemistry-based strategies to engineering substrates have

also been employed, changes in cell adhesion to substrates

can be controlled by manipulation of properties of

materials such as surface wettability [122,123], and

through control of surface properties that influence protein

adsorption and thus are able to enhance and control cell

adhesive properties [37,124,125]. It has been shown that

different chemical groups can influence MSC fate, for

example, poly(ethylene glycol) (PEG) hydrogels functiona-

lized with small molecule chemical groups are able to

direct adipogenesis with hydrophobic t-butyl groups,

and osteogenesis with charged phosphate groups [126].

However, organic chemistry is beginning to offer new

strategies for biomaterial synthesis and control, for

example developments in click-chemistry [127–129]

and GF tethering techniques [130,131], it offers a diverse

toolbox for precise functionalisation of substrates.

Commonly used PEG hydrogels can be modified to

contain photodegradable cross linkers, allowing the user

post-gelation control over substrate properties such as gel

conformation and biochemical composition with MSCs

in situ. Photodegradation of the hydrogel network changes

the physical three-dimensional microenvironment of the

encapsulated cells and can lead to migration or lineage com-

mitment [132]. Incorporation of light-controlled binding

moieties, such as RGD, can also lead to dynamic control

over cell fate; hydrogels were functionalized with pendular

RGD motifs that are dynamically cleaved by a light stimuli,

decreasing availability for adhesion formation and leading

MSCs to commit to chondrogenesis [132]. Additional studies
apply other click-chemistry strategies to design protease-

degradable PEG hydrogels, these incorporate locally

sequestered GFs only released upon cell infiltration [133].

Similarly, enzymatic activation was exploited in a 2D PEG

based system. Here RGD groups were attached to a low-

adhesion PEG or Fmoc (fluorenylmethyloxycarbonyl), the

‘blocking group’ via an elastase cleavable linker, with the

blocking group preventing easy access to the RGD moieties

for cell integrins. With the blocking group in place, adhesion

and intracellular tension were lowered sufficiently to support

MSC self-renewal. However, upon elastase cleavage of the

dialanine (AA) linker, cells could access the RGD more

easily, form larger adhesions supporting greater intracellular

tension, driving osteogenic differentiation [134].

Other chemical approaches aim to create ECM-mimetic

materials, the FN RGD adhesion domain has been incorpor-

ated into many materials, however, when it is presented with

its synergy domain PHSRN it enhances the affinity of integrin

binding over 40-fold [135]. This FN fragment, FNIII7-10, can

be engineered to retain the native spacing between the syner-

gistic sites, which increases specifically the binding of

integrin a5b1. Surfaces engineered that contained RGD-

only, or failed to control site distances, showed a decrease

in cell adhesion [136]. This control over integrin binding

using FN fragments was found to promote osteoblast differ-

entiation in vitro, and improve osteointegration of titanium

implants in vivo [136–138]. Such adhesive group grafting

has similarly been used to functionalize titanium. Here, the

RGD motif was presented with PHSRN to induce efficient

osteogenesis of MSCs [75]. Titanium is the gold standard

material for hip replacements and many other orthopaedic

materials, and hence this study provides an example of

how materials already employed in a clinical setting could

be simply functionalized to create cell instructive materials

that may increase implant efficacy.

In addition to its integrin binding domains, FN also con-

tains a highly promiscuous GF binding domain in its 12th

to 14th type III repeats [139] (figure 4a), meaning this mol-

ecule could also be exploited as an approach to deliver GFs.

GFs have been widely employed in the clinic, due to their

capacity to regulate cell growth, healing and stem cell

differentiation, however soluble GF administration usually

means application of supraphysiological doses which can

lead to serious off-target side effects [140]. One study engin-

eered a recombinant FN fragment to contain both the

integrin binding and the GF affinity domain bound to a

fibrin matrix, leading to potent synergistic signalling

through recruitment of integrins and GF receptors to

adhesion domains. By incorporating platelet-derived

growth factor (PDGF) and bone morphogenic protein 2

(BMP-2), they found the system could promote both

wound repair and bone growth [141]. This recombinant

protein approach to exploit FN integrin-binding and GF-

sequestering domains is employed as upon adsorption to

synthetic materials FN typically adopts a globular confor-

mation, concealing these binding sites. However work by

our group found that upon FN adsorption, the polymer

poly (ethyl acrylate) (PEA) causes spontaneous unfolding

of FN leading to assembly into nanonetworks, thus expos-

ing cell binding and GF binding domains (figure 4b)

[142]. This approach allowed absorption of BMP-2 at

approximately 300-fold lower dose than the current gold

standard application for bone repair. This simple
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Figure 4. Fibronectin (FN) nanonetwork formation and growth factor (GF) presentation. (a) FN has three types of domains involved in FN – FN interactions (I1 – 5), GF
sequestration (III12 – 14) and integrin binding (III9 – 10). (b) Atomic force microscopy (AFM) images after FN adsorption shows spontaneous formation of FN nanonet-
works on PEA, but not PMA which results in globular FN aggregates. Sequential adsorption of growth factor (here BMP-2, at 25 ng ml21) shows interactions of
BMP-2 with FN fibrils on PEA, but not PMA, due to an open molecular conformation exposing the key GF binding domain. The proximity of the GF binding and
integrin binding domain on FN molecules in networks leads to synergistic integrin and GF receptor signalling. (c) Conventional solubilized GF delivery (right) nor-
mally requires high dosages, making it less efficient than ECM-bound (or solid-phase presenting) systems (left) that may use several orders of magnitude lower
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(b) taken from reference [130]. & The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a
Creative Commons Attribution License 4.0 (CC BY). (c) Adapted from reference [65]. (Online version in colour.)
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engineering approach exploits the synergistic presentation

of BMP-2 on the FN material-driven networks, and was

shown to drive significant bone regeneration in a critical

size defect in vivo [130]. This system has also been used to

coat titanium implants to present ultralow doses of BMP-

7, with the aim to improve the bio-integration of titanium

implants [143], and further to this, by tethering vascular

endothelial growth factor (VEGF) improved vascularization

of biomaterial scaffolds was achieved in vivo [144].
Immobilized GF technologies not only permit lower

doses of the GF to be employed (thus being more cost effec-

tive than solubilized GF delivery) but as many of these

ligands act at interfaces in vivo, immobilization also permits

a more biomimetic recapitulation of stem cell niches

[131,145] (figure 4c). Controlled tethering of such ligands to

synthetic materials has proved difficult [146], as non-specific

cross-linking may compromise the molecules bioactivity and

further issues in controlling the amount, stability and cellular
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accessibility to the ligands. A solution to this was presented

by Fan et al., were a poly(ethylene oxide) (PEO) based co-

polymer was used to covalently tether epidermal growth

factor (EGF) to the substrate, a GF associated with tissue

repair. Specific tethering at the N-terminus retained EGF

bioactivity but restricted it to the surface. EGF tethering led

to signalling through its receptor EGFR, in a manner akin

to physiological-like matrix-embedded EGF, where EGFR is

stimulated but not internalized [147]. Another striking

example of protein tethering is immobilized leukaemia

inhibitory factor (LIF), an essential protein for ESC self-

renewal, to maleic anhydride copolymer thin-film coatings.

Here, they showed retention of pluripotency for at least

two weeks in absence of soluble LIF in culture media

(i.e. standard ESC feeder-free culture conditions) [131].

More recently, block copolymer micellar nanolithography

was used to coat substrates with evenly spaced and tuneable

arrays of gold nanoparticles functionalized to carry BMP-2

molecules. This system allows precise control over the nanos-

cale distribution of the BMP-2, with one BMP-2 molecule/

nanoparticle, both the local amount and the distance between

BMP-2 anchor points can be varied. Here it was found that

immobilized BMP-2 increased intracellular Smad-signalling

compared to if the GF was administered soluble in the

media, even at concentrations as low as 0.2 ng cm22

Smad-dependent signalling was observed [148]. This system

permits sustained local delivery of BMP-2 or other GFs, and

allows the precise study of the effects of GF density and

spacing on intracellular signalling.
3. Artificial stem cell niches for self-renewal
Using biomaterial interfaces, mechanisms for MSC differen-

tiation are beginning to be well understood. However,

understanding MSC self-renewal in vitro is of growing impor-

tance. MSCs are increasingly used in tissue engineering

strategies, but are also being studied for their tumour-homing

abilities for drug delivery [5] and as anti-inflammatories to modu-

late graft-versus-host disease [8,9,14]. To support this, MSCs need

to be isolated and expanded in vitro, this presents a challenge due

to loss of self-renewal capacity on normal tissue culture plastic.

In vivo this homeostasis between self-renewal and differ-

entiation, quiescence and proliferation, is tightly controlled

by many factors from the niche (figure 1). Through modu-

lation of biomaterial properties discussed above, in vitro
stem cell self-renewal is being investigated. As noted earlier,

nanotopographies have been employed with well-defined

patterning, an ordered square pattern leads to retained multi-

potency of MSC markers over long culture periods [44].

Muscle stem cell regenerative capacity has been maintained

in culture microenvironments that mimic the native stiffness

of muscle (12 kPa) [149], and simple chemical modification

of glass substrates have been used to present functional

groups that maintain MSC phenotype [150]. It is notable

that control of MSC self-renewal by stiffness remains elusive.

However, it has been demonstrated that environments with

homogeneous stiffness do not support cell growth as well

as heterogeneous environments. Using photodegradable

hydrogels, it has been shown that disorganized patterns of

matrix mechanics lead to cytoskeletal disruption, decreased

cell spreading and prolonged expression of MSC-related

marker proteins [151]. Further, nanoparticle based
approaches have been used to maintain MSC phenotype.

Using super paramagnetic nanoparticles, MSCs were magne-

tically levitated into spheroids within collagen type I gels. In

this three-dimensional niche, they remained quiescent and

expressed niche/MSC markers such as nestin and stro-1.

Further, using a simple wound healing model that involved

placing the spheroid-niches above monolayers of different

phenotypes (fibroblast, osteoblast, chondrocyte) that were

subsequently scratched, the cells could respond to the regen-

erative demand with migration, differentiation and

engraftment into the required phenotype [152]. It is impor-

tant to note that if intact, non-scratched, monolayers were

used, the MSCs in the niches remained quiescent. This is a

key observation of a regeneration responsive, but otherwise

quiescent three-dimensional in vitro niche.

Understanding the mechanisms behind adult stem cell, and

specifically MSC, self-renewal has been somewhat limited. For

MSCs, self-renewal requires an intermediate adhesion state that

suppresses differentiation and allows for long-term growth in
vitro. As highlighted by many biomaterial strategies, osteogen-

esis of MSCs requires large adhesions that support high

intracellular tension [43,45], with adipogenesis opposing this,

occurring when adhesion is weak and tension low [39,40]; con-

ditions favouring MSC self-renewal sit mid-way between these

two fates. However, as these conditions also favour fibroblast

formation, it has been hard to achieve this in culture [32,65].

MSC self-renewal mechanisms are emerging as rather

different than the better known embryonic self-renewal mech-

anisms using NANOG, SOX2 and OCT4 [153], to dissect MSC

self-renewal biomaterial strategies are being developed, for

example the highly-ordered square (SQ) nanotopography

[43,44,154]. Mitogen activated protein kinases (MAPKs) have

emerged as the ‘switch’ that controls MSC growth and differ-

entiation [155], extracellular signal-related kinase (ERK1/2) is

a known key regulator of proliferation and growth, and along

with other MAPKs is also known to act in cell cycle regulation.

ERK1/2 is also implicated in phosphorylation of lineage defin-

ing transcription factors, for example, for osteogenesis [155]. It

has been proposed in HSCs and pluripotent cells that the tran-

sition from early to late G1 phase is crucial for self-renewal

[156–160]. Using nanotopographies, mitogenic factor cyclin

dependent kinase 6 (CDK6), which is involved in G1-S tran-

sition, was found to be upregulated in proliferating MSCs

[33], and has also been shown to inhibit bone morphogenetic

protein (BMP)-induced osteogenesis [161], this suggests a

role in both growth progression and differentiation restriction.

While MSCs undergoing material-controlled self-renewal

have normal growth and proliferation rates, the MSCs spend

longer in G0/G1 and less time in G2 [162]. The increase in

G1 phase in cells is accompanied by the repression of cyclin

D1, which forms a complex with cell division cycle 2 protein

(cdc2) to drive cell cycle progression [163]. Similar cell cycle

control has been reported in neural stem cells [160], while plur-

ipotent stem cells have shorter G1 phases [157–159]. It is

notable that when undergoing material-controlled osteogen-

esis, the expression of E2F transcription factor 1 (E2F-1),

which promotes G1 to S phase transition, is decreased [164],

and phosphorylated retinoblastoma protein (pRB), which

blocks the entry from the G1 to the S phase and which is associ-

ated with the activation of RUNX2 [165], is upregulated. This

suggests that MSCs regulate cell cycle to both slow growth

(osteoblasts are slow growing cells while MSCs are fast grow-

ing cells) and prime osteogenic sensitivity.



rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180388

12
As in vivo stem cell niches are complex, combinatorial bioen-

gineering techniques are moving towards allowing

deconstruction and reconstruction of these multifaceted sys-

tems. To shed light on mechanisms used by stem cells in their

niches, one approach is to simplify the system. To do this, micro-

array platforms have been developed that allow screening of the

effects of unique combinations of multiple microenvironmental

signals on stem cell fate. Using robotic spotting technologies

mixtures of protein cues, such as ECM components, niche inter-

action ligands and other signalling proteins, can be presented

and analysed at the single-cell level [166,167]. One example cul-

tured human neural precursors on protein printed arrays and

found cells remained in an undifferentiated state only when

stimulated by two morphogens in concert, Wnt and Notch

[168]. This approach has also been used to investigate ligands

involved in the conversion of mammary epithelial cells to

myoepithelial or luminal epithelial fates [169]. More recently,

Roch et al. presented ligand components of the bone marrow

niche and identified candidates important for HSC mainten-

ance, presented to HSCs and using single-cell analysis, they

were able to define gene expression signatures of HSCs as

they differentiated into multipotent progenitors (MPPs) [170].

Similar microarray platforms have been developed to

screen for self-renewal promoting materials discovery. Both

human embryonic and induced pluripotent stem cells

(hPSC) have the ability to self-renew indefinitely in culture,

and hence hold great promise for drug discovery and regen-

erative medicine [171–174]. However, present culture

methods for clonal expansion of these cells is suboptimal—

involving mouse embryonic fibroblast feeder layers or

animal derived feeder-free culture systems (such as Matrigel)

which are inefficient, prone to both batch-to-batch variability

and xenogenic contaminants [123,175,176]. Defined culture

conditions need to be established to produce safer and

more biomedically useful hPSCs. Combinatorial polymer

libraries were first posed in 1997 [177] and in 2004 on-slide

synthesis of polymer microarrays was achieved by Langer’s

group [178]. Rapid synthesis of acrylate based polymers is

achieved by monomer combinatorial mixing printed onto

hydrogel-coated slides, which then undergo ultraviolet-

photoinitiated free-radical polymerization [122,178,179].

Such polymer microarrays were subsequently used to

screen a first-generation library of 496 acrylate polymer com-

binations [122]. Assessment of clonal growth, expression of

key pluripotency marker OCT4, and characterization of sur-

face properties (such as wettability, elastic modulus and

surface roughness) were quantified using high-throughput

methodologies. Through mapping stem cell behaviour to

material properties, surface wettability was found to be the

strongest modulator of colony forming frequency, and

engagement of integrins aVb3 and aVb5 with adsorbed vitro-

nectin promoted hPSC self-renewal for long-term culture

periods [122]. Scalability of hit materials was not demon-

strated in this study [122], however, it is envisioned how

such synthetic, readily synthesized monomers could be

scaled up to create cell cultureware, removing some of the

current hurdles for biomedical translation of these cells.
4. Future and conclusion
Many of the approaches discussed above are reductionist in

nature and have been key to elucidating and understanding
key mechanisms for how cells sense and respond to

their complex microenvironment, however, while these

approaches are easily scalable and robust, they lack biologi-

cal functionality. Recent material strategies are now

beginning to re-build the complexity of the niche in vitro to

create more tissue-like systems, as there is a strong need for

more humanized, NATs (bioengineered, cellular, scaffolds,

on-chip systems) for drug discovery, disease modelling and

regenerative medicine.

For example, one study designed a synthetic hydrogel

(PEG based) system to define the ECM parameters that

govern ISC expansion and organoid formation. Organoid for-

mation is through self-organization of stem cells into

structures that resemble their native multicellular architecture

and many of their functional features. Here, by designing a

matrix that was mechanically dynamic, it allowed for optimal

ISC expansion (stiff substrate, FN-based adhesion), and

subsequently for differentiation and intestinal organoid for-

mation (soft-matrix, laminin-based adhesion). This dynamic

substrate design could thus support the need for the chan-

ging mechanical environments throughout the native

cellular evolution during organ development [180]. Another

key example of intestinal organoid formation was recently

developed also using a modular PEG hydrogel system, here

adhesive peptides are bound to one fraction of the four-

armed PEG molecule to mimic basement membrane inter-

actions, the unconjugated arms are then cross-linked with a

protease-cleavable peptide to form the hydrogel. Both the

adhesive sequences and the cross-linking peptides can be

exchanged, and by varying the PEG concentration, matrix

stiffness is also tuneable. hPSC were seeded into gels to

form intestinal organoids, and upon implantation into

mechanically injured colons of immunocompromised mice

could enhance healing of the defects [181]. These fully

synthetic systems offer well-defined alternatives to animal-

derived platforms (such as Matrigel), expanding applicability

as complex models for both potential therapeutic

applications, and clinical and industrial research.

Further to organoids, organ-on-a-chip (OOC) platforms

seek to recapitulate the multifaceted tissue-specific cellular

microenvironment in three-dimensional settings for a given

organ system. OOC aims not to build a whole living organ,

but to establish a minimally functional unit that is represen-

tative of aspects of human physiology in a controlled

system [182]. Several limitations posed by organoid systems

which influence organ development and function during

development and disease can be addressed with these

microfluidic OOC systems—for example parameters such

as physical forces including fluid shear stress [183,184],

mechanical compression [185,186] and electrical stimulation

[187]. OOC allows for recreation of tissue interfaces

(e.g. lung alveolus–capillary [186], blood–brain barrier [188])

multicellular compilations that enable communication between

multiple cell types (e.g. liver hepatocytes and fibroblasts

[189,190]) and the integration of individual OOCs through

microfluidic channels to mimic physiological organ subsystems

(e.g. liver–pancreas [191], liver–heart [192]). By guiding or

situating collections of cells that can assemble into

three-dimensional structures OOCs can represent simplified

yet realistic models of organ-level systems, and offer functional

read-outs that suit the intended application. Systems such as

these can model healthy and diseased development and

behaviours, offering again more realistic models for drug
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discovery and toxicity testing. However, it is also envisioned

that their use alongside clinical trials will help realize a precision

medicine approach, where individual patients can be tested, or

important differences in varied patient cohorts (such as sex, age,

ethnicity, other pathology) could be considered and trials

optimized for specific patient biology [182].

On the other hand, microwell formats that recapitulate

cell–cell and cell–matrix interactions typical of stem cell

niches will be valuable for analysis of heterogeneous popu-

lations of stem cells at the single cell level. Integration of

material technologies and protein patterning will be crucial

in fabrication of microwell arrays, these will allow high

throughput screens to identify ECM molecules relevant to

‘niche-like’ regulation. By developing arrays that mimic

cell–cell interactions through peptide presentation, single or

combinations of molecules can be identified that induce

effects on cell behaviours, such as self-renewal and lineage

commitment [167,170]. Typical cell–cell interaction studies

rely on co-culture of two or more cell types together that

not only make it difficult to distinguish the key molecular

effectors, but also encounter further problems such as com-

promised media types, multiple patient sources, and

biological variation. It is envisioned high-throughput

approaches could be developed to incorporate many of the

biophysical and biochemical properties discussed throughout

this review.

Technologies such as these will prove valuable for the

pharmaceutical industry, as although in recent decades

advances in the molecular understanding of diseases has

underpinned new potential therapeutic targets there is a

lack of corresponding increase in drug discovery and man-

ufacture. This is irrespective of substantial increases in

research and development investment, which led to a

‘volume research’ approach using new genomic and high-

throughput technological approaches, and yet productivity

has remained static [193]. This frustration led AstraZeneca

to report that from 2011 to 2016, 66% of its small molecule

projects failed; critically only 23% before clinical trials (i.e.

cheap fails) [26]. This suggests that drug discovery has

become more challenging, but also demonstrates a lack of

ability to predict success at the pre-clinical testing stage.

Further to this, although animal models are widely used

for both drug discovery and toxicology screening, it is

notable that 43% of new drug fails are not predicted by

the in vitro and pre-clinical in vivo screens. It is envisioned

that technologies such as many discussed above will solve

these issues, by engineering validated NAT models that

can more readily predict drug targeting and tissue dose
exposure, and hence leads with high risk of failure can be

dropped quickly—before expensive clinical trial stages. As

discussed above, biomaterial engineered systems can

easily introduce complex physiological-like parameters,

removing problems of overly simple in vitro cell lines and

in vivo models (non-human, animal based). Currently, reg-

ulators are encouraging the development of tissue models,

such as organoids, to help provide ‘humanized’ data along-

side traditional in vivo data [194]. Further, the banning of

animal testing in toxicology screenings for e.g. cosmetics

in the UK, has driven the use of NAT models for toxicologi-

cal assessment. Several bioengineered approaches have

emerged for skin/eye irritation and phototoxicity, for

example EPISKINTM, SkinEthic RTE and EpiDermTM

[195–197].

NAT development will also play a key role in the

advancement of the use of stem cells for clinical applications

in regenerative medicine. Current culture systems rely on

non-human (xeno) serums in culture mediums or feeder

layers to support SC survival and expansion. However,

these xeno systems can induce as immune response upon

clinical transplantation, for example, FBS is a potential

source of pathogens, such as endogenous retroviruses and

xenoepitopes, and batches of the feeder layer Matrigel have

been found to be contaminated with lactate-dehydrogenase-

elevating virus (LDV). Further to this, xeno-derived

components suffer greatly from batch-to-batch variability.

This has driven searches for serum-free and feeder-free cul-

ture systems, although current systems contain several

recombinant proteins or inhibitors whose long-term effects

are yet to be understood. Suggesting further, the need for

more humanized models that remove contaminating animal

factors, it is highly anticipated that this can be approached

by the advancement in understanding of the stem cell niche

with biomaterial and biofabricated systems.

In conclusion, the future for materials as biological tools

to dissect stem cell functions, as the building blocks to

develop NATs to accelerate drug screening and to underpin

regenerative medicine is very promising.
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196. Kandárová H et al. 2006 Assessment of the skin
irritation potential of chemicals by using the
SkinEthic reconstructed human epidermal model
and the common skin irritation protocol evaluated
in the ECVAM skin irritation validation study. Altern.
Lab. Anim. 34, 393 – 406.
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